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Amplitude equations (including nonlinear damping terms) are derived which 
describe the evolution of patterns in large-aspect-ratio driven capillary wave 
experiments. For drive strength just above threshold, a reduction of the number of 
marginal modes (from travelling capillary waves to standing waves) leads to simpler 
amplitude equations, which have a Lyapunov functional. This functional determines 
the wavenumber and symmetry (square) of the most stable uniform state. The 
original amplitude equations, however, have a secondary instability to transverse 
amplitude modulation (TAM), which is not present in the standing-wave equations. 
The TAM instability announces the restoration of the full set of marginal modes. 

1. Introduction 
The aim of this work is to give a systematic account of the formation of regular 

patterns and their secondary instabilities in parametrically driven capillary wave 
systems of large aspect ratio, The parametric instability of a fluid-air interface 
driven by vertical oscillations was first observed and investigated by Faraday (1831) 
and is associated with his name. 

In  cells sufficiently large and deep compared to the resonant wavelength of the 
pattern, and with a sufficiently clean free surface, the many complex processes of 
damping at the walls (Miles 1967), meniscus (Cox 1986; Hocking 1987), and surface 
layer (Miles 1967) of the cell may be neglected. A large enough system also allows the 
effects of the finite cell size on pattern selection (Douady & Fauve 1988) t o  be 
neglected. The present work explores mechanisms of pattern selection and secondary 
instability which depend on nonlinear interactions between modes in an infinite 
system. 

While many experiments on driven surface waves have been performed on small 
cells, i.e. on parametric resonance of low-order modes (Douady & Fauve 1988; 
Ciliberto & Gollub 1985; Simonelli & Gollub 1989), some experiments have also been 
performed (Ezerskii, Korotin & Rabinovich 1985; Ezerskii et al. 1986; Levin & 
Trubnikov 1986; Tufillaro, Ramshankar & Gollub 1989) in which the cell is on the 
order of 100 wavelengths on a side. These latter experiments display several 
remarkable features, including (i) square patterns, even in cylindrical containers ; (ii) 
a secondary instability to a pattern with transverse modulations of the amplitude of 
standing waves, but with long-range order retained; (iii) at still higher drive 
strength, a transition to spatiotemporal chaos. 

Estimates of how big a cell is required for neglect of boundary effects to  be a good 
approximation may be given in terms of the various lengths in the problem, i.e. the 
system size L, the viscous penetration depth I ,  and the wavelength A .  These estimates 
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are satisfied by expcrimcnts similar to those of Ezerskii et al. (1986) and Tufillaro 
et al. (1989) ; the requirements are derived, following Miles (1967) and Cox (1986) 
in Appendix C. 

Additionally, large-aspect-ratio cells provide an essentially continuous spectrum 
of modes in which the system may respond to the drive ; complications resulting from 
a discrete spectrum are absent. (The more subtle effects of boundary conditions on 
wavenumber selection described in Cross el al. (1983) may in principle be present in 
large-aspcct-ratio capillary wave cells, but we will not consider this possibility here.) 

In  the absence of boundary effects, nonlinear interactions in the bulk of the cell 
bctwcen growing capillary waves will determine the symmetry and wavelength of 
regular patterns, much as thc prcfcrcncc for rolls of a given width in Rayleigh-Bdnard 
cells is dctcrmined by interactions between incipient rolls in the bulk of thc cell. In  
$2,  we employ the methods of Newel1 & Whitehead (1969) to obtain amplitude 
equations for the neutral modes of the system in the abscncc of damping, which are 
travelling capillary waves with frequency w equal to the subharmonic of the drive 
frequency 2 w .  Ezerskii et al. (1986) first derived equations of this form (but with 
linear damping terms only, and coefficients which differ from thc results of the 
present work) under the assumption of a square pattern (which is obscrvcd 
experimentally). To understand the origin of the square pattern, we dcrivc evolution 
equations for patterns of general symmetry. Readers who arc not concerned with the 
method of derivation may skip to the discussion immediately preceding equations 

We derive linear and nonlinear damping terms for the amplitudes of the travelling 
waves in $3. It turns out to be essential to consider nonlinear damping as a 
mechanism stabilizing the amplitude of regular patterns, in the physical situation 
that the system (rather than the experimenter) selects the wavelength of the pattern. 
Any non-dissipative mechanism for shifting the frequency of a growing mode at  finite 
amplitude may be totally compensated by the system choosing a mode sufficiently 
off resonance: this leads in the absence of nonlinear damping terms to unbounded 
amplitudes at  any value of drive above threshold, if the system is free to adjust the 
wavenumber globally. (It is possible that for some set of boundary conditions, global 
adjustment of the wavenumber is suppressed or eliminated. The intent of this paper 
is to investigate what happens if this is not so. Much of the paper, i.e. the derivation 
of the amplitude equations with damping for arbitrary angles between waves ($92 
and 3), does not depend on this assumption.) 

The set of amplitude equations for the travelling capillary waves, including the 
non-linear damping terms, is neither Hamiltonian, nor derivable from a Lyapunov 
functional. However, for drive strengths sufficiently close to threshold (determined 
by the damping strength, which is assumed to be small), the damping splits the 
degeneracy between the growth rates of two standing capillary waves (both of which 
are neutral modes a t  zero drive in the absence of damping). This results in two 
standing waves of different growth rates, and a non-zero drive threshold for the 
faster-growing standing wave. Thus for drive strength close to threshold, the number 
of neutral modes is reduced by half. Riecke (1990) in a recent paper obtained (for the 
one-dimensional case) new, simpler amplitude equations by assuming essentially 
that the amplitude of the decaying standing wave is determined adiabatically by the 
growing standing wave. We construct these equations, for the present case of 
arbitrary patterns in two dimensions, in $4. These simpler amplitude equations are 
(with some restrictions) derivable from a Lyapunov functional. Thus, the symmetry 
and wavenumber of the most stable pattern may be found from minimizing the 

(14)-( 16). 
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appropriate Lyapunov functional. Using our results for the nonlinear couplings for 
patterns of general symmetry, we find that square patterns indeed give the deepest 
minimum in the functional of the usual high-symmetry candidates (single waves, 
square and hexagonal patterns). 

In $5  we investigate the secondary instabilities of the uniform square pattern. The 
simplified amplitude equation has both transverse (zigzag) and longitudinal 
(Eckhaus) instabilities (Eckhaus 1965 ; Newel1 & Whitehead 1969) of the usual sort ; 
however, the path of the most stable state through the drive-wavenumber plane 
never intersects an Eckhaus boundary. Instead, it turns out that the full amplitude 
equations, which contain the dynamics of the decaying standing waves neglected in 
the adiabatic approximation, display an instability of the uniform pattern to 
transverse amplitude modulations (TAM) (Ezerskii et al. 1986) which is not present 
in the simpler amplitude equations. Clearly, the small splitting between the two 
standing waves induced by weak damping does not continue to be important for 
increasingly strong drive. The TAM instability explicitly depends on and indeed may 
be said to announce the failure of the adiabatic approximation, and the return to 
relevance of the neglected modes. We show that the path of the most stable uniform 
state collides with the TAM instability boundary. 

Finally, in the concluding Section we make quantitative comparisons between the 
present theory and the experiments of Tufillaro et al. (1989) which appear to satisfy 
the large-system requirements for validity of our theory. We find semi-quantitative 
agreement in the value of threshold drive strength, as well as for the pattern 
amplitude, unstable wavenumber, and drive strength at the TAM instability. The 
predictions for quantities at the TAM instability, particularly the drive strength, are 
rather sensitive to the values of the nonlinear couplings. Errors by a factor of three 
due to neglect of higher-order terms in our expansions, or boundary effects, such as 
damping within the viscous penetration depth at  the free surface due to surface 
contamination, would be sufficient to achieve quantitative agreement. 

2. Amplitude equations 
Our starting point for deriving amplitude equations for the Faraday instability is 

the set of ideal-fluid equations (Benjamin & Ursell 1954) for the velocity potential 
$(x, y ,  4, 

~+g(v$)2+p+fzcos2wl= 0, ( 1 )  

V2$ = 0, (2) 

$+V$.VS= Z".V$. (3 1 

with the incompressibility condition 

and the convective equation of motion for the height LJx, y) of the free surface 

The constitutive equation for the pressure due to surface tension is given by p = 
Z(c,  +c2), where c1 and c2 are the principal radii of curvature, which leads to 

p =-cv . [V~/ ( l+ (Vcy)~] .  (4) 

The equation for the Laplace pressure is meant to be evaluated at  the free surface, 
of course, so that is the most convenient place to enforce the Bernoulli equation. 
However, it is inconvenient to  evaluate g5 on the surface (as is also required for 
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computing the motion of the surface) ; instead, we expand q5 on the surface in terms 
of q5 at  x = 0:  

and similarly for space and time derivatives of 4. 

equations may be written 
We also expand the pressure to O(y"); then the Bernoulli and surface-convection 

~ - Z V Z ~ + + f ~ c o s 2 w t + N 4 ( ~ , ~ )  = 0, (6) 

with the nonlinear terms expanded to third order in the fields as 

N, = 0; 4 + is a,v; 4 + v, $*  vc+ Pea,. v, 4, (8) 
N + -1m2 - , c(vg)z++scvg.v(vg)z++a,~-+~v: d++(v4)z+a(a,(v$)z. (9) 

We follow the procedure of Newel1 & Whitehead (1969) to derive amplitude 
equations for the above hydrodynamics. The marginally growing or neutral solutions 
are the solutions of the linearized equations. I n  the present case, these are the set of 
travelling capillary waves, with any wavevector. Because we are driving the system 
parametrically (Landau & Lifshitz 1976) a t  frequency 2w, we expect the response to 
be a t  w .  Hence we take as the lowest-order solutions a sum over capillary waves at  
frequency w with some set {ki} of wavevectors : 

co = x u i ( X , T ) e x p ( i k j - x - i w t ) + c . c . ,  (10) 
i 

- iw 
k 

q50 = -exp ( k z )  2 u j ( X ,  T )  exp (ik,. x-iwt) + C.C. 
i 

Here k = lkll and k-, = -ki ,  the variables x and X are two-dimensional, and the 
variables X and T are slowly varying. 

An expansion bookkeeping parameter E is introduced, with X = ex, T = et, W +  
V + e V X ,  a, + a, +€a,. Here V = V, + fa,, and W, and V, are gradients in the plane. 
Note that the z-dependence of the fields is not slow, since the flow decays into the 
fluid on a lengthscale k - l ;  hence there is no 'az ' .  

The fields are expanded as 5 = ec0 + e2cl + e3c2 + . . . , the drive as f = cf0 + ~"f, + . . . . 
The linear operator of (6) and (7)  is expanded as L = Lo+&, +e2L,+.  .. , and the 
nonlinear parts as e.g., N, = e2Np) + e3Nt) + . . . . 

Equations (6) and (7) may then be expanded in powers of e to  give 

Lo Yo = 0, 

Lo Y l+Ll  Y o + N ,  = 0, 

Lo Y2+L1 Y l + L ,  Yo+Nz  = 0, 

where Y = (c, 4) and N = (Nc, N+).  The first equation gives the neutral solutions. The 
second equation has a solvability condition, which determines the group velocity in 
the equation of motion for the {a,}; when this condition is enforced, the second 
equation gives the second-harmonic response of Y. The solvability condition for the 
third equation gives further terms linear in gradients of uj ,  which shift the frequency 
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of the capillary waves along the dispersion relation; in addition, the second 
harmonics mix with the neutral modes to givc a resonant three-wave response, which 
gives cubic terms in the equation of motion for the {a,}. 

The incompressibility condition V2$ = 0 must be enforced order by order in F: as 
well. The expansion generates the equations 

(13) I V2$, = 0, 

V2$, + 2v. v, $" = 0, 

v2$2+2v.vx$,+v:,$, = 0. 

These may be solved order by order, by finding particular solutions q5iP) which satisfy 
the ith incompressibility equation, and then writing the ith non-resonant correction 
as $i = $ih) + $iP),  where V2q5(h) = 0. The solvability condition will be affected by q5(P), 

but the non-resonant correction $(h) extracted at  z = 0 from the ith equation of 
motion may trivially be extended to give V2$ih) = 0 (and hence no effect on the ith 
incompressibility equation) by multiplying by exp(pz) with the appropriate q. 

Some details of the expansion are given in Appendix A. The following aspects of 
the procedure are worth noting : 

( i )  The form of the nonlinear terms in the equation of motion for a, up to cubic 
order must be iTji)lak12aj + iTjE) aka-k a*j, with Ti;) and 5";;) real as we have not yet 
included damping. The reason is that the capillary waves that these amplitudes 
multiply must have frequencies and wavevectors which sum to the frequency and 
wavevector of the wave corresponding to a j ,  i.e. the terms must be resonant. Because 
of the requirement that  the frequencies of the waves sum to w ,  there can be no terms 
of even order in the {a,}. This absence of, for example, quadratic terms suggests that 
hexagonal patterns will not be favoured. 

(Our expansion to third order in F: neglects terms studicd by Zakharov, L'vov & 
Starobinets (1971) of the form fa: a_* a , which gives an amplitude dependence to  the 
drive coupling and a mechanism for limiting pattern amplitudes different from those 
of the present work. These terms are O ( 8 )  and are negligible here.) 

(ii) The form of the linear gradient terms in the equation for aj is prescribed by the 
dispersion relation. That is, aj(x ,  t )  = exp (iAk-x-iAw(Ak) t) should be a solution of 
the equations of motion. The dispersion relation w2 = Zk3 implies an expansion of the 
form 

k. 

(Ak)* (k.Ak)l) 1 a 2 w  8 +-- (k-Ak)2 + . . . AW = - (k*Ak)+--- 
2 ak2 ak  2k 2k 

or, with ql, = Ak and Ak2 = qf+q?, the relation 

3w 3w 3w 
A w = - q  + - q : + s q i + . . .  

2k 'I 4k2 

The resulting equation of motion for a, is given as (this result has the same form 
as the expression reported by Ezerskii et al. (1986), but we find different values for 
the coefficients TE for the case they consider, namely square patterns.): 

- iTj;) laklz a, - iTjE) ak a+ a_, * (16) 

with the expressions for TYJ relegated to Appendix A, The behaviour of these 
nonlinear coefficients as a function of the angle between the j t h  and kth waves is 
displayed in figure 1. 
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FIGURE 1. The nonlinear frequency-shift coefficients T$ and damping Acoefficients y$ of the 
travelling-wave amplitude equations (22) are displayed as a function of kj .k , ,  the cosine of the 
angle between the j t h  and kth travelling waves. Solid curve, 7'"); dashed curve, y( l ) ;  dot-dashed 
curve. T(*) ; dot-dot-dashed curve, Y ' ~ ) .  

3. Damping 
The previous section considered parametrically driven capillary waves in the 

absence of viscous dissipation. The resulting amplitude equations are Hamiltonian, 
and in fact are equivalent to an expansion of the total mechanical energy of the 
system (kinetic plus surface tension) in powers of {aj) .  

We may add damping in the following way. First note that in the experiments of 
Tufillaro et al. (1989) the viscous penetration or skin depth is much smaller than the 
wavelength of the capillary waves ; hence the flow in the fluid is ideal over almost all 
of the volume. An argument due to Landau (Landau & Lifshitz 1959) concludes that 
the contribution to  viscous dissipation from within the skin depth is small compared 
to that in the bulk. So, to  compute dissipation in the bulk, we must substitute the 
computed expansion for the flow, $ = + + $2 ,  into the expression for the viscous 
dissipation in an incompressible fluid, which is 

The resulting expansion for E takes the form 

E = - D O )  laJ2 - 0;;' lUi12 1alC(2 -0:;s uj a; a?,, (18) 

with D(O) = 871Ck4, and explicit expressions for DFJ, i = 1 , 2  are relegated to Appendix 
B. 

One may then assume a form for the damping terms in the amplitude equation, 

d .  7 = - ( 7 ' 0 )  + yj;) lUk12) a). - yj;) alC a-k u!j + . . . . (19) 

Now we take the explicit derivative of the Hamiltonian implied by the amplitude 
equation, the relevant terms of which are 

(20) 

with h(O) = 2Ck2,  hj2 = - Ck4 Tjf for i = 1,2 .  (The quadratic part of the Hamiltonian 
H gives the trivial part of the equation of motion for ai, namely ai = - h a j ,  which 
has been absorbed into the time-dependent of a)..) 

H = h'O) lajI2 + hj;) lai12 la,J2 + hji) aj a j a , *  a!, 
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Equating the two expressions for the dissipation results in y = y(O) = 2vk2, and the 
following results for the y$ : 

(21) 

The behaviour of this nonlinear coefficient as a function of the angle between the j t h  
and kth waves is shown in figure 1. Some comments about these functions are in 
order. First, though individual coefficients y(i)  take on negative values for some 
angles, this does not lead to  negative values for the nonlinear contribution to  the 
energy dissipation. Second, the divergence of T(’) and y ( l )  at cos 0 - a results from a 
shortcoming of the computational method. For an angle such that k,  + k,  has length 
twice ko, a quadratic nonlinearity produces waves a t  the drive frequency which are 
resonant, i.e. satisfy the dispersion relation. Because equations of motion for these 
waves were not retained in the calculation, spurious divergences appear in the 
coefficients. This leads to divergent damping of pairs of waves separated by an angle 

The complete equation of motion for the travelling wave amplitudes then takes the 

= p&/(2h(0’) -D‘O’h‘i’ h(0))2. 
jk /( 

of 0 = cos-1 (2:- 1) x 74.9”. 

form 

ikf 3w 4 3iw 3iw A 

40 -’ 2k 4k2 ’ 8k2 
0 = uj+y(o)aj+-a*.+-(kj-V)a --V2a +-(k j .V)2aj  

(We have neglected for simplicity the wavenumber dependence of the damping 
coefficients, which by an extension of the above method would lead to an expansion 
in gradients of the linear damping term as y(O)( 1 + 3 ( k .  V ) , / k ; )  ai a t  this order. These 
corrections are small because the relative wavenumber shift is small in the region of 
interest. ) 

To summarize : we have explicitly computed the coefficients of this amplitude 
equation, including both nonlinear frequency shifts (TK) and nonlinear damping 
(y$!), by the systematic expansion of Newel1 & Whitehead (1969), for an arbitrary set 
of pattern wavevectors {ki}. The expressions for ?heAnonlinear coefficients may be 
found in Appendices A and B. The dependence on k j -  k ,  of these coefficients is shown 
in figure 1. In  the next sections, we shall make use of these general results to  examine 
the local and global stability of regular patterns of capillary waves. 

4. Standing waves 
The amplitude equations with damping terms are not Hamiltonian ; rather, they 

are derivable from a Hamiltonian plus the dissipation functional (18). Most 
important, they are not of ‘relaxational’ form; thus in general we cannot make 
simple arguments about the most stable state of the driven system as the extremum 
of some functional. 

The presence of damping splits the degeneracy a t  threshold between the growth 
rates of the two neutral eigenmodes a t  each kj (two degenerate standing waves) ; for 
f = y:  the growth rate of the favourable standing wave just becomes positive, while 
the other is -2y. 

Thus sufficiently close to threshold (now at f = y ) ,  the number of relevant neutral 
modes is half the number of travelling waves. This suggests deriving equations for 
the amplitudes of standing waves, i.e. applying the Newell-Whitehead formalism 
anew to the PDEs for the {aj}.  I n  particular, we may write new neutral modes as 
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proportional to the neutral eigenstates of the linearized aI equations (as in Riecke 
1990). 

In  this way we are led to  examine thc neutral stability curve of the a, equations 
with damping. The linearized equations coupling ai and a!,, which we assume to vary 
in space as exp(iq-x)  (i.e. we examine the growth of modes slightly different in 
wavenumber from k), are 

= [ -iw+y-in -if 

if - iw + y + in] [ 
Here the 'detuning' n is given by n = -Aw(q)  x - (aw/aq)  Ak.  That is, the detuning 
is the difference in frequency between the subharmonic of the drive, and the natural 
frequency of a wave with wavevector ki + q. 

With the drive strength f at the threshold v a l u e p  = ( y 2 + ~ 2 ) : ,  which defines the 
neutral stability curve in the ( f ,  cr)-plane, the linearized equations have eigenvalues 
iw = 0 and iw = 2y. The corresponding eigenvectors are (1,iQ) and (i,-iQ*) 
respectively. Here the phase Q is given by 

Hence the distinction between the two standing waves is their temporal phase with 
respect to the drive, since 

6 = (ajexp (ikI.x) + a-j exp ( - ik,. x)) exp ( - iwt) ,  5 K cos (k, .x) exp ( - iwt+  io,), 

where exp (2i0,) = iQ for the neutral mode and exp (2i0,) = -iQ* for the decaying 
mode. 

or 

The neutral modes may thus be written 

(a,, a?,) = ( 1 ,  iQ) A,(X.  7') cxp (iq sx). (25)  
The derivation of the standing-wave amplitude equations is straightforward to 

third order, as there is no second-harmonic generation, no complications due to a free 
boundary, and no subsidiary equations to solve. It will turn out that we are 
interested in IT of O(y2). For n < y we obtain to third order 

where T,, = 5";;' + 5';Li + 5";;) + 7q!i, and r similarly in terms of the Y ( ~ ) ,  and the 
dimensionless drive strength E = (.f- y)/y. (This E is unrelated to the bookkeeping 
parameter of $2. which will not appear further in this paper.) 

Here, as throughout thc discussion of the A,  equation, indices in implied sums run 
only over 'positive' values of the index k ;  i.e. each wavevector appears only once. 

Again we may make a few comments about the structure of the A, equations. 
(i) The linear terms arc of the form 

1 
(27) 

systematic expansion to higher order reproduces successive terms in the expansion 
of Aw in gradients. 

1 - Y E + _  ( A w ( V )  - n)' A, ; [ 27 
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(ii) The cubic term above can change sign for sufficiently negative u, suggesting the 
need for a fifth-order term. By carrying the expansion to higher order, the fifth-order 
term can be obtained (for u < y )  as 

The amplitude cquation a t  cubic order is derivable from a Lyapunov functional ; 
the O(A5) term is not in general derivable from a functional. Sufficiently near to 
threshold, where the O(A5)  term may be neglected, we may determine the most stable 
state. To O(A4), the functional is (omitting gradient terms) 

We now suppose a regular pattern (all (A,I equal). Under the assumption that a 
mechanism exists for the system to adjust wavelength (hence detuning) continuously, 
we may minimize F with respect to u to find the best detuning for a given amplitude, 
as u* = -$TlAI2 with T = C,?,. (For square patterns, we have from Appendix A 
that T = 1 1.7%k2.) 

Of course, it is possible that the system arrives a t  a pattern in which different 
standing waves have different amplitudes, or even different detunings ; these 
possibilities may be investigated on the basis of the standing-wave amplitude 
equations (26), (28) (generalized to the case of different detunings u, for thc different 
waves), even in the case when no functional exists. This possibility will not be 
pursued here. 

Proceedings under the assumption of a regular pattern, and disregarding for the 
moment the small negative term of O(A6)  which is generated, the optimized 
functional is 

(30) 
where r = Z,r,,, and h is the number of modes in the pattern. As the summands 4, 
depend on the angle between rolls, r takes different values for each regular pattern. 
The functional (30) has the deepest minimum for a square pattern, among the choices 
of single waves (rolls), square patterns, or hexagonal patterns. For rolls (n = l ) ,  
r =  6vk4; for squares (n = 2), r =  1.93vk4; and for hexagons (n  = 3), r = 32.29vk4. 
(Here v is the kinematic viscosity.) 

F ( A ,  u * ( ~ ) )  = - y E n ~ 2 + ; n r ~ 4 ,  

The optimum amplitude A for a given drive is then (neglecting O(A6) terms) 

Nonlinear damping, neglected by Ezerskii et al. (1986), thus enters in an essential 
way to determine the stable amplitude. With the detuning parameter u to be 
determined not by the experimenter but by the system through its choice of 
wavenumber, we require r > 0 to have a finite response to  drive strength just above 
threshold. 

Farther from threshold, where the O(A6) term in F matters, we may still have a 
functional in a limited sense, under the assumption that the pattern is regular and 
of a known number of modes. With this strong restriction we may determine the 
optimal state, i.e. the angle between standing waves, the best value of u, and the 
optimum amplitude. This is useful for analysing the stability of a square pattern with 
respect to a shearing distortion, as well as the behaviour of cr*(ye) for larger drive 
amplitudes. 
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FIGURE 2. Shown are the various stability boundaries in the ( E ,  +plane together with the path of 
the  most stable uniform square pattern. Solid parabola, neutral stability boundary ( A  = 0);  solid 
line, locus of saddle node bifurcations (SN) ; long dashes, transverse-amplitude instability 
boundary (TAM) ; dotted line, Eckhaus instability boundary (Eckhaus) ; short dashes, the most 
stable uniform state, CT*(E)  (optimal). The most stable uniform state collides with the TAM 
boundary. 

Under these assumptions, the functional becomes 

The optimum detuning is u* = -$TA2 as before; the optimum A is the solution of 
aF/aA2 = 0, or 

We may then compute the depth of the minimum in E' as a function of angle 
between standing waves in a canted square pattern, using the results of Appendices 
A and B for T and r as functions of the angle between the waves. We find that the 
square pattern is indeed stable to changes in the angle away from +IT. The trajectory 
of the optimal detuning u* as a function of drive strength is displayed in figure 2. 

The functional of (32), valid for regular patterns, has a saddle-node bifurcation 
when the fourth-order term has a negative coefficient, or u T / y + r  -= 0. (See figure 
2.) The saddle node occurs when the drive decreases to the point at which F loses the 
pair of extrema which are associated with the metastable state a t  finite amplitude A .  
This occurs when 

The finite-amplitude uniform solution becomes metastable on a transition line a t  a 
slightly higher value of drive. Between the neutral stability boundary and the 
transition line, the A = 0 uniform solution is metastable. 

Perhaps unfortunately, i t  is not evident that the physical system may be 
constrained to respond to  the drive with patterns of a given wavelength, 
corresponding to some desired detuning IT. Left to its own devices, the system is free 
to choose w = cr*(yc), which avoids the region of metastability. (The detuning 
parameter IT, which was undetermined and phenomenological in the work of Ezerskii 
et al. (1986), is in fact given by minimizing the functional of (32).) 
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5. Secondary instabilities 
Following standard methods, we may find the boundaries of stability of the 

uniform pattern of the standing-wave amplitude equations by searching for 
transverse (zigzag) and longitudinal (Eckhaus) instabilities (Eckhaus 1965). We 
know the relation between detuning and amplitude, from the functional valid for 
square patterns ; and, from the equation for stationarity of the pattern, we have the 
expression for drive in terms of detuning and amplitude. Thus we know the path of 
the most stable square uniform state in the (€,a)-plane. One can then check to see 
whether the path collides with a stability boundary. 

It turns out that the path collides not with an Eckhaus boundary, but rather with 
a boundary for a transverse amplitude modulation (TAM) instability, described by 
Ezerskii et al. (1986). The TAM instability is not found in the standing-wave 
equations but rather in the full travelling-wave amplitude equations, for the 
following reason. The standing-wave equations were derived essentially by assuming 
that the decaying, non-neutral combination of travelling waves was a degree of 
freedom whose amplitude was slaved to  the neutral mode, i.e. that its dynamics were 
adiabatic. The full travelling-wave equations for the aj  are (since aj and arj are 
coupled) second order in time, while the standing-wave equations omit half of the 
modes and are first order in time. The TAM instability explicitly involves the 
dynamics of the decaying standing wave, and hence the breakdown of the adiabatic 
approximation which gave rise to the standing-wave equations. This secondary 
instability thus answers the question of how the system, a t  some drive f above 
threshold, reintroduces the degrees of freedom which were irrelevant a t  smaller f. 

We linearize about the stationary solution of the standing-wave equation (with 
fifth-order terms included), i.e. the minimum of the functional of (32), which satisfies 

T2 o =-ye+-+ r+- A:+-A;.  
2Y a2 ( “y‘) 2Y 

(35) 

We perturb the j t h  standing wave by writing A, = A,+ ( B  + iB”), where B and B 
are small space- and time-dependent perturbations on the uniform wave amplitude 
A,, and A ,  = A ,  for k + j .  With the j th  roll taken along 2, this leads to 

with no implied sum o n j ,  and where 5? is given by 

For square patterns, the values of these coefficients are computed from Appendices 
A and B to be 5? = 9.19wk2, q, = 1.33wk2, and rj, = 4.82vk4. 

As usual, the B‘ and B are decoupled in the case of modulations transverse to the 
wavevector kj of the roll we are perturbing (a, + 0), and coupled in the longitudinal 
case. The transverse case gives a phase instability for u > 0. The longitudinal case 
gives an Eckhaus instability when 

4 FL.U 225 
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As a matter of numerical convenience, the Eckhaus boundary may be plotted in 
the (€,a)-plane parametrically as a function of A ,  by solving (38) for a ( A ) ,  and 
computing f ( A ,  a ( A ) )  from the stationarity condition for a finite-amplitude pattern, 

(See figure 2 . )  f 2  = ( y + T A 2 ) 2 + ( a + T A 2 ) 2 .  (39) 

Some comments on the unusual shape of the Eckhaus boundary are in order. Very 
near threshold, where the last term of (36) may be approximated by 2r i j  A : B  and 
(35) similarly approximated, the Eckhaus boundary and neutral stability curves are 
given respectively by 

a2 
- x by. a 2  r, 

- N  

2y N 2&,4f9 2y 

Thus the usual factor of & is replaced in this limit by J j / ( 2 r + 4 , )  when dealing with 
patterns with more than one set of waves. 

The asymmetry of the Eckhaus boundary occurs in the vicinity of the emergence 
of the line of saddle nodes (see $ 4 ) .  This occurs a t  a / w  = - ( y / w ) ( f w / y T )  which for 
square patterns is -O.l@/w. 

Observe finally that the optimal-state trajectory does not cross the Eckhaus 
boundary; this is intuitive, since the Eckhaus instability is a mechanism for the 
system to locally adjust the wavenumber when global adjustment is impossible. 

The instability analysis of the full a, equations is much more complicated, because 
the linearized equations result in a 4 x 4 system in the general case. However, in the 
case of disturbances of one standing wave in a pattern transverse to its wavevector 
k,, the linearized equations decouple into two 2 x 2 systems. One system describes the 
coupling of spatial phase and relative amplitude degrees of freedom for left-and 
right-moving parts of the standing wave, and gives in the long-wavelength limit an 
‘ undulation ’ or transverse phase modulation mode, already encountered above. 

The second 2 x 2 system describes the dynamical coupling of temporal phase and 
overall amplitude degrees of freedom of the left- and right-moving waves, and gives 
rise to the transverse amplitude modulation (TAM) instability, which is not present 
in the A, equations. It can be shown explicitly that the series of corrections to the 
standing-wave neutral mode (equation (25) )  generated in the Newell-Whitehead- 
type derivation of the standing-wave equations is the same as an adiabatic 
approximation on the dynamics of the temporal phase in the travelling-wave 
equations (16), (17). 

We linearize about the stationary solutions of (22) ,  perturbing the j t h  travelling 
wave by writing a k j  = exp (iO,)(A + b k i ) ,  and a+j  = exp (i0,)A for k + j .  The 
decoupling of the 4 x 4 equations for the real and imaginary parts of b+,  is achieved 
by a simple change of variable. Defining b = bi+b-,, we obtain 

3w 
4k 

0 = 6’ + 7 VZ, b” + 2 ( a  + Tl A 2 )  b” + 2& b’, 

* 3w 
4k2 

0 = b”--VV2, b’ + 2 ( y +  rl A’)  b”-2T2 A 2  b’: 

where we have defined 

Tl 

and similarly for 
coefficients computed from Appendices A and B are 
2.94vk4, and & = 6vk4. 

Tji) + Tjf) + Tlli)i, T,  G Tj;) + Tj;) + Tjf )  + T$\, 
k 

in terms of y( l ) .  For square patterns, the values of these 
= 8.79wk2, T,  = 8.5wk2, 4 = 
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The condition for (40) ,  (41) to  give positive growth rates for disturbances is 
2 

4 4  A 2 ( y +  r, A 2 )  + ?q2 - (T, + Tz) A 2  - c ~ )  - ( c ~ +  (T,  - T2)A2)2 < 0. (42) 

If a+(T ,+T2)  A 2  > 0, then the left-hand side of the inequality is smallest for 
instabilities a t  wavenumber q given by 

(:: 

Otherwise, the least stable q is q = 0;  this leads to an instability for c~ < -(TI 
+ T,) A 2  when c~ < - T, A 2 -  T i 1  G(y + T,)A2. This is never satisfied for the optimal 
state. 

Just  as for the Eckhaus boundaries, (38), the limits of (42) may be conveniently 
plotted by solving for c ~ ,  

(44) 
and plotting ye(a) parametrically as a function of A .  (See figure 2. )  

We may find analytically the location of the crossing of the optimal state, (33) with 
c ~ *  = -hTA2, and the left-hand TAM boundary, for y 4 w ;  this occurs a t  

c ~ *  = - (T, - T,) A'& [4& A 2 ( y  + T,  A')];, 

- 2TyT, 
c T =  

(T,-T,-$T)2' I 

Note that a t  this point, all terms in the standing-wave functional F of (32) are of 
the same order. Terms not calculated in F ,  of higher order in A / y ,  would all be of 
comparable magnitude. Hence the numerical values of the coefficients of (45)  may 
not be reliable. 

Proceeding with the calculated values for the various coefficients, the secondary 
instability occurs a t  a drive strength above threshold ( f 2 - y 2 ) / y 2  = 28 = 5.81(y/w)', 
with a detuning a / w  = 2.25(y/w)', an amplitude kA = 0.618y/w, and a modulational 
wavenumber q / k  = 2.41y/w. 

For presenting the locations of the various stability boundaries in the (8, a)-plane, 
we note that for y 4 w ,  we may scale kA = A'(y /w) ,  r= r y k 2 ,  a / w  = c ~ ' ( y / w ) ~ ,  and 
8 = e'(y/w) ' ,  and all dependence on y and w scales out (with corrections of order 
( y l w ) ' ) .  The resulting neutral stability, saddle node, Eckhaus, and TAM boundaries 
arc shown together with the optimal state trajectory in figure 2. 

6. Conclusion 
6.1. Summary of theory 

We have derived two different amplitude equations to describe the evolution of 
general patterns in parametrically driven capillary wave systems. The first amplitude 
equation is for travelling capillary waves, which are the neutral modes in the absence 
of dissipation, with a vanishing threshold drive strength. These equations are 
systematically obtained in an expansion in the width of the band of excited modes, 
following Newel1 & Whitehead (1969). Ezerskii et al. (1986) previously presented 

4-2 



94 S. T .  Milner 

these equations for the particular case of square patterns ; we agree as to the form of 
these amplitude equations but disagree as to the values of the coefficients for square 
patterns. 

To these Hamiltonian equations we add both linear and nonlinear damping terms, 
which are calculated from the viscous dissipation of energy in the bulk of the fluid, 
expanded in powers of the travelling wave amplitudes, using the flow field results of 
the amplitude equation expansion. (Only linear damping terms are present in the 
work of Ezerskii et al. (1986) ; i t  turns out that the nonlinear terms play an essential 
role in selecting the square pattern, see below.) The resulting equations are not 
derivable from a functional, and thus may have dynamics which is not merely 
relaxational ; one may not infer from these equations in any simple way the most 
stable uniform pattern. 

The effect of viscous damping is to  split the degeneracy of the growth rates of the 
two standing waves (which are both neutral modes as zero drive in the absence of 
damping), resulting in two standing capillary waves with different growth rates. 
Riecke (1990) observed in a recent paper that for drive strengths sufficiently near the 
threshold for the faster-growing mode, the dynamics of the slow-growing mode may 
be adiabatically eliminated. We employ this idea to obtain a second amplitude 
equation, for standing waves, with half the number of degrees of freedom of the first 
amplitude equation. This second equation is derivable from a functional (for drive 
strength near enough to threshold) ; thus, the most stable uniform pattern and its 
wavenumber may be found. 

The quartic term in the corresponding functional is a measure of the strength of 
non-linear damping, which enters is an essential way in determining the most stable 
pattern. We find that square patterns (which are observed experimentally) are 
preferred among rolls, squares, and hexagonal patterns. The basic reason for this is 
that square patterns have the weakest nonlinearity in the damping, which allows the 
functional to attain the deepest minimum (and the pattern amplitude to grow the 
largest). 

We examine each set of amplitude equations for secondary instabilities; the 
standing-wave equations have the usual longitudinal Eckhaus and transverse phase 
instabilities (Eckhaus 1965 ; Newel1 & Whitehead 1969). However, patterns of the 
full travelling-wave equations have a transverse amplitude modulation (TAM) 
instability, described by Ezerskii et al. (1986). We find that the uniform pattern 
which minimizes the functional from which the standing wave equations are derived 
collides with the TAM instability boundary, and compute the drive strength 
(f-y)/f = E ,  instability wavenumber 4, and pattern amplitude A for which this 
occurs. For weak damping ( y / o  < l ) ,  the quantities (kA)2 ,  ( q / k ) 2 ,  and E all scale as 

6.2. Comparison with experiment 

Two recent experiments on parametrically driven capillary waves (Douady & Fauve 
1988; Tufillaro et al. 1989) are candidates for comparison to the present theory of 
systems of large aspect ratio, in which viscous damping at  the walls and the free 
surface of the fluid are neglected, as are effects due to a discrete spectrum of excitable 
modes. We review in Appendix C the various boundary contributions to damping 
which are neglected in the present calculation, to determine which of the experiments 
may sensibly be compared with the present theory. 

We conclude that the system of Tufillaro et al. (1989) is indeed large enough that 
dissipation at the walls of the container may be neglected. We find that surface 
contamination could possibly contribute appreciably to the damping, but no history 

( y / w ) 2  - v 2 ( p / C ) G .  
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dependence has been reported (J. P. Gollub 1989, private communication) for 
measurements on n-butyl alcohol used in these experiments. If nonlinear surfactant 
damping were important, its dependence on the angle between waves would have to  
be investigated to  preserve the conclusions of $ 4  as to the global stability of square 
patterns. 

The experiments of Douady & Fauve (1988) may not satisfy the assumptions of 
the present theory that the damping is confined to the bulk of the fluid. Using the 
experimental parameters, we find that the ratio of dissipation a t  the walls of the 
container to the bulk contribution is about 0.25, which may be neglected; and there 
is no contribution to dissipation from a moving contact line, since the meniscus is 
pinned in these experiments. However, the surface of the water used in these 
experiments is intentionally contaminaed with surface-active molecules to stabilize 
the surface tension. This may lead to  large surface contributions to the damping. As 
evidence of this, the threshold for the initial instability is reported to  be about 
200 cm/s2, while the theoretical prediction assuming only bulk damping is about 
60 cm/s2. 

More important may be the effects of a discrete spectrum in the experiments of 
Douady &, Fauve (1988). They observe in systems of smaller aspect ratio (L  - 10A) 
a great variety of possibly metastable states. First, they observed ‘symmetric ’ 
superpositions of eigenstates sin(nxx/l) sin (mxy/L) and sin (mnx/L) sin (nxy/L) with 
n and m ranging from 1 to about 15. These may be regarded as four rolls of equal 
amplitude with wavevectors k = n f  f m$ and m i  f n$. Second, they observed 
‘dissymmetric ’ states of a single ejgenstate sin (nxz/L) sin (mny/L), i.e. two rolls of 
equal amplitude and wavevectors k, - = m i  f n$ for angles between k, and k- greater 
than ax. 

Douady & Fauve (1988) report that  the modes with the smallest values of m, i.e. 
those most nearly square (with the least overall modulation), have the largest 
existence domain in frequency; this may be consistent with the global stability of the 
square pattern in a large system. They also reports that  the threshold drive is lowest 
for the smallest ratio m/n for m2+n2 constant; this is indicative of finite-system 
effects, since the threshold drive in a large system does not involve nonlinear effects, 
and depends only on frequency (and not, for example, on pattern symmetry). 

The present theory predicts that  such finite-m states are not globally stable, in the 
absence of boundary effects (including discrete spectrum effects). In particular, the 
‘dissymmetric ’ states correspond to canted square patterns which the present work 
shows are not globally stable. The metastability of these states could be investigated 
by repeating the analysis of $5 for these non-square patterns. 

With high-viscosity fluids (e.g. glycerol), Douady & Fauve (1988) observe an 
essentially hexagonal pattern. For this case, the viscous penetration depth 1 is such 
that kl 2 1 ; most of the viscous damping is within the skin depth, and the present 
calculation of the frequency shift parameters Tg and nonlinear damping coefficients 
yyi, which assume Icl< 1, are not valid. 

Our predictions for the primary and secondary instabilities are in qualitative 
agreement with the experiments of Tufillaro et al. (1989) ; the quiescent state gives 
way to a square pattern, which for slightly higher drive becomes unstable to 
transverse amplitude modulation (TAM) of the standing waves in the pattern. 
However, there are quantitative discrepancies. With experimental parameters w = 
320n, v = 0.03, = 0.8, and Z= 24 (c.g.s. units), they measure a threshold 
acceleration amplitude f *  = 5.49. This is lower than the theoretical value o f f *  = 
4 w y / k  = 8g. 
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This discrepancy cannot be due to damping processes not included in the theory, 
which would lead to an experimental threshold higher than the predicted one. The 
discrepancy may be due to non-uniform acceleration of the container; the 
displacement a t  threshold is only 9 pm. A direct measurement of y from the decay 
time of free oscillations is difficult because of the finite response time of the 
electromagnetic shaker used to produce the waves (J. P. Gollub 1989, private 
communication). (In the experiments of Ezerskii et al. (1986), the observed threshold 
is reported as f * = 4.2 g, higher than the appropriate theoretical value of 2.8 g. 
Ezerskii et al. (1986) claim good agreement without explicitly making the 
comparison.) 

The transverse amplitude modulation (TAM) instability, first observed by Ezerskii 
et al. (1985, 1986), is indeed exhibited in the experiments of Tufillaro et al. (1989). In 
their experiments, the TAM instability occurs experimentally a t  E = 0.10, compared 
to the theoretical prediction of 8 = 0.01. This could be explained by nonlinear 
damping coefficients which were a factor of three higher than the values predicted 
from bulk damping only. The corresponding values of pattern amplitude c,,, = 8A, 
instability wavenumber q, and frequency detuning a (a measure of the wavenumber 
shift of the pattern from its threshold value) are in better agreement with 
experiment. The theoretical values for the parameters of Tufillaro et al. are: c,,, = 

95p,  k / g  = 6.6, and a / w  = 9 x lW3. Experimentally (J. P. Gollub, private com- 
munication), k / q  - 8, a / w  is unmeasurably small, and cmax is consistent with 

The mechanism for the determination of the globally optimal wavenumber of the 
square pattern and the eventual TAM instability are robust to  changes in the values 
of the nonlinear coefficients which may result from the importance of higher-order 
terms in the standing-wave amplitude equation or new damping processes. The 
scaling of the secondary instability with y / w  for yIw << 1 is also robust and may be 
tested by measuring the secondary threshold as a function of frequency (or viscosity, 
or surface tension). 
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Appendix A. Expansion of a* 

Here we present some intermediate results of the amplitude equation expansion, 
including the expressions for T$ ; the terms in the equation of motion for ai generated 
at each order ; the non-resonant corrections !Pi to the sum of resonant modes !Po ; and 
the particular solutions $I”). 

The expressions for the T@) are 

A ”  T(2) = W k 2 [ ; + y ] ,  

where c = kj- k, in the above. 
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The particular solutions #(p) used in enforcing incompressibility for spatially 
varying patterns (when the z-dependence exp ( k z )  does not satisfy Vz$ = 0 ) ,  are : 

W Z  
exp ( k z )  $iP) = -_ (k - V) a1 exp [i(k,.x - wt)] + c.c., (A 3) 

1 k 

ifk2 A 

40 $$‘) = { (i, - V)2 a, + V2 a, - +( k, - V)2 a, + 7 (k, . V) af 

x exp [i(k,. x - wt)] exp kz 

( 1 - 5 c - 2 ~ ~ )  
+$z [ (k,  + k1)- Vl@j a,) 

(+( 1 + c))i [(+( 1 + C ) p -  2)] 

x exp [i ((k, + k,) - x - 2wt)l exp lkj + k,l z + c.c., 
” ”  

where in the above c = k1 - k,. 
The non-resonant corrections to Yo = (co, # o )  are 

8w2 f k  1 1 vl = -? (iwlk) [G ( i , . V )  a, +-a* exp [i(k,-x- wt)] + C.C. 

+K$) a f a 1 exp[i(kj-k,).x] 
i+ l  

+ak C j ,  ( -iwb/k ) ala, exp [i((kj +k,) - x- 2 4 1  + c.c., (A 5)  

where d = dj, = [ ( ~ ( 1 + ~ ) ) 1 ( 3 - ~ ) - 2 ( 1 + c ) ]  [2(+(1+c))i-l]-’ 

b = 6,  [,l -5c-2cZ] [2(a(l +c)):- ( A 6 )  
c = C. 31 k,*k,. 

Two terms generated to second order in the expansion of a, not shown in (16) are 

ifz k2 
f (dlev)a!j-- 

32w3 a*’ 
0 = a, ...-- 

8w 

which represent detuning of the driving term and second-order response to the drive, 
respectively. These terms are both small in the experimental cases of interest, 
because the drive strength a t  threshold is O ( y / w ) ,  which is small. 

Appendix B. Damping expansion 

be written using incompressibility as 
Equation (16) for the dissipation of energy due to viscous damping in the bulk may 

the limits of integration depend on the wavy free surface of the liquid, and so may 
be expanded 

Integrations by parts leads to 

E = - $y Jd2 .[a,” #2 + (V2 + a,”)z (g++(3#2]1, (B 3) 
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where in the above, V2 acts only on 5 and a, acts only on q5, which is evaluated a t  
2 = 0. 

To expand (B 3) to the order required in (18), we must also have the non-resonant 
cubic correction Y2,  which turns out to be 

1 
Y, = 4wk2 (. ) {B, a, (af  1, +B,  af af a!,} exp [i( k, . x - w t ) ]  + c.c., 

if iw/k 

i 
I 

where B, = 1 - 2c + 2c2 + (i($( 1 + c)): [5 - 8c-5c2 + ( 1  +c),( 1 - S)] 
-$(l +c)( 1-6) - (1 +c)2)(2(i( 1 +c))j- 1)-1,  

B, = ;+C2+: (1 - fTj f ) .  
A "  

In  the above, c = ki-kf as before, and S = Sjf, the Kronecker delta. 
A tedious and straightforward expansion of (B 2) then yields 

D(l) = -4~o~k~[-B~+2b~(~(1+~))~+2b(l+c)(l+($(1 +c)):))" 
-@( 1 - ~ ) ~ + + t ( l + ~ ) ~ ( l - S )  +8(1 +c)], 

D(2) = [ -B  , +-( ; 1 -c)2( 1 -a+) -2( 1 -?)I, 
with B,, B,, b, d ,  c, and 6 as in (B 5) and (A 6) respectively. 

Equation (21) may then be evaluated numerically for any cases of interest. 
Relevant numerical results for the various damping parameters are given in the main 
text. 

The above procedure may be extended to give damping coefficients which depend 
on the spatial derivatives of the ai, terms neglected in the expansion (18) of the 
energy dissipation. At linear order we obtain finally 

h, = -2vk2 i+--(ki-V),)a,+ 3 .  ... ( 16k2 

Rotational invariance arguments require the linear damping of a mode to Pepend 
only on its wavenumber, and not on the direction of its wavevector. Hence (ki.V) in 
the above must be replaced in general by iAk,(V), the expansion of which is 

Thus we have an expansion for y(V) which begins 

iAki(V) = (ii.V)-i(V2/(2k)-(k,.V)2/(2k))+ ... . (B 8) 

y(V) = 2vk2 1 +-((i,-V)-iV:/2k)2)+... 3 ( 16k2 

Appendix C. Damping at boundaries 
In  addition to the bulk contribution to energy dissipation computed in Appendix 

B, there are three additional sources of dissipation in a deep cell of finite size L,  with 
some amount of adsorbed surface contaminants present on the free surface. These are 
(i) damping yw a t  the walls of the container; (ii) damping y1 at a moving contact line 
(meniscus) along the wall of the container ; and (iii) damping ys due to a surface layer 
of finite compressibility. We consider each of these in turn, following Miles (1967) and 
Cox (1986). 

At the sidewalls of the container, the fluid velocity changes over a viscous 
penetration depth 1 = (2v/w)i from the ideal-fluid bulk value v = Vq$ to v = 0. Thus 
velocity gradients are of order 1-l; then (17)  leads to 

E = ($vw)i d s  v2, s 
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where the integral dz leads 
to a factor (2k)-' ,  and we may replace v along the wall a t  z = 0 by k$;  this leads to 

dS' is over the wall surfaces. The integral over depth 

8, = ( t . w ) s k 2 J d L ' B .  (C 2 )  

The total energy of small oscillations is twice the kinetic energy, which leads to 

E = kpk dS$2. (C 3) i 
Then the damping coefficient yw = E / ( 2 E )  is given by 

yw = wl/L. (C 4 )  

The ratio of yw to the bulk contribution y to the linear damping coefficient is then 
y w / y  = (Llk2)-'. For the experiments of Tufillaro et al. (1989), where L = 8 cm, 
w / 2 n  = 160 s-l, v = 0.03 cm2 s-l, and CT - 24 erg cm-2, we have 1 - 8 x cm, 
k = 32 cm-', and yw/y - 

Dissipation a t  a moving contact line is a more subtle quantity, as i t  depends on the 
microscale a t  which the no-slip boundary condition is violated ; a hydrodynamic 
description of a moving contact line without slip has a infinite dissipation rate 
(Bretherton 1961). The slip scale may be set by some combination of molecular 
lengths and surface roughness, and may vary from material to material. Cox (1986) 
has analysed the velocity dependence of the contact angle to first order in capillary 
number Ca. For the case of a viscous fluid displacing air he obtains 

A8 = f( 0) Ca In cl, (C 5 )  

where A0 is the velocity-dependent change in the macroscopic contact angle, f(8) = 
2 sin (8)LO-sin (8) cos (8)]-l, and the capillary number is Ca = T,IV/CT. The cutoff 
parameter e is e = s/R, where s is the slip length and R is a macroscopic length a t  
which the surface is no longer flat. For the present case we make a conservative 
estimate s = 10 A, and R = 1. 

To determine the dissipation a t  the moving contact line, we may compute the 
work done by surface tension as the contact angle changes and the contact line 
moves. This gives a dissipation per unit length of order 

E / L  - VCT [COS (8, + A0) - cos (0, -A@] - f(8,) 7 In e-l. (C 6) 
(Here 8, is the static contact angle.) The result (C6) may be anticipated by 
dimcnsional analysis, as it must be proportional to yv2, which then forces a 
logarithmic dependence on the slip scale cutoff. This gives rise to a contribution to 
the linear damping coefficient y of the form 

y1 = 4w In e-lf(0,) ~1~ L-l. (C 7 )  

With the parameters of Tufillaro et al. (1989), 8, - in, and s = 10 A, the ratio 
y l / y  = 0.17. This only gives an upper bound on the dissipation at the contact line, 
because we have not taken into account contact-angle hysteresis. Experimental 
systems typically have functions B(v) with a discontinuity 8, a t  v = 0 between a few 
and a few tens of degrees. If the amplitude of surface waves is small, so that the 
contact angle for a fixed meniscus is within 8, of O,, the meniscus will not move, and 
no dissipation will occur at the contact line. 

Finally, we consider the effect on dissipation of a layer of contamination (e.g. 
surface-active adsorbed molecules) a t  the free surface. Even if the two-dimensional 
viscosity of this two-dimensional liquid is neglected, the finite compressibility of the 
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layer changes the flow in such a way as to  increase dissipation within 1 of the free 
surface, (The extreme case is an incompressible surface layer, which gives additional 
dissipation just as the side walls do.) 

The situation has been analysed in detail by Miles (1967) ; we briefly summarize his 
results. The compressional stresses in the surface layer must be balanced by 
boundary-layer stresses resulting from some amount of slipping between the surface 
layer and the bulk over the skin depth 1 .  That is, the stresses 

T,  = iw-'k2X(1-C)n, T,  = yl-'Cw (C 8) 

must balance. here v is the fluid velocity a distance 1 from the free surface; x is the 
bulk modulus of the surface layer ; and Cw is the relative velocity of the fluid and the 
surface layer. 

Defining E = (+7pu3) -+k2~  to be a characteristic ratio between viscous and 
compressive stresses, Miles finds C = t /([-  1 + i). Summing the viscous dissipation 
within the skin depth and the work done against the compressive stresses, the 
contribution ys to the damping coefficient is found to be 

Note that ys is maximized for 6 = 2, which corresponds for the parameters of 
Tufillaro et al. (1989) to  x - 1.5 erg (This modulus would also be evident as a 
reduction of the surface tension of a clean interface (Miles 1967); hence, a careful 
measurement of the dispersion relation can place a bound on how large a x may be 
present.) The corresponding largest ys /y  ratio is about 2 ;  hence a contaminated 
surface can lead to an observed y three times the bulk contribution. For ys  to be less 
than 9, we require x < 0.3 erg 
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